Organization of the human IMPG2 gene and its evaluation as a candidate gene in age-related macular degeneration and other retinal degenerative disorders.
نویسندگان
چکیده
PURPOSE To characterize the genomic organization of human IMPG2, the gene encoding the retinal interphotoreceptor matrix (IPM) proteoglycan IPM 200, to evaluate its relationship to IPM 150, and to evaluate its involvement in inherited retinopathies, such as age-related macular degeneration, retinitis pigmentosa, and Leber congenital amaurosis. METHODS After isolation of human genomic clones, the structure of IMPG2 was determined by sequence analysis. Mutational analyses were conducted on genomic DNA isolated from 316 probands using single-strand conformation polymorphism analysis. RESULTS The IMPG2 gene is organized into 19 exons, and the structure of the gene is highly similar to that of the IMPG1 gene, which encodes another retinal proteoglycan, IPM 150. Mutational analyses indicate that the observed sequence changes are present at approximately equal rates in donors with and without retinal disease. Additional data derived from RT-PCR and Northern blot analysis show that IMPG2 is processed in the human retina into multiple alternatively sized transcripts that may represent splicing isoforms. CONCLUSIONS Analysis of the overall relationship of human IMPG2 (located on chromosome 3q12.2-12.3) to human IMPG1 (located on chromosome 6q14) suggests that these genes have evolved from a common ancestral gene. Although this is an excellent candidate gene for hereditary retinopathies, single-strand conformation polymorphism analyses provided no evidence that variations in IMPG2 coding region are responsible for the inherited retinopathies examined.
منابع مشابه
Cell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کاملهمراهی پلیمورفیسم p.Gly119Arg ژن CFI در مبتلایان به بیماری دژنراسیون ماکولای وابسته به سن در جمعیت ساکن در شهر تهران
Background: Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world and is characterized by progressive degeneration of the retinal pigment epithelium and secondary photoreceptor loss, resulting in visual loss. Etiological research suggests that age related macular degeneration is a complex disease, caused by the interactions of several genetic and enviro...
متن کاملAssociation of CFI gene polymorphism with age related macular degeneration in Northwest of Iran
Background & Aims: To investigate the association of CFI p.Gly119Arg polymorphism with Age-related macular degeneration (AMD). Materials & Methods: In this case-control study, the association of p.Gly119Arg polymorphism in CFI gene was investigated in 65 patients suffering from AMD and150 healthy age, sex and ethnicity matched unrelated people as control group. Both of the case and cont...
متن کاملبررسی پلی مورفیسم C-2518T ژن CCL2 در مبتلایان به بیماری دژنراسیون وابسته به سن ماکولا از منطقه ی شمال غرب ایران
Introduction & Objective: Age-related macular degeneration (AMD) is a disease affecting the central regions of the retina and choroid, which can lead to loss of central vision. Etiological research suggests that AMD is a complex disease, caused by the actions and interactions of multiple genes and environmental factors. Numerous studies have focused on the role of chemotactic cytokines, also kn...
متن کاملThe Study of Serum Asymmetric Dimethylarginine Concentrations in the Different Paraoxonase Phenotypes of Exudative Age-related Macular Degeneration Disease
Background and Aims: Age-related macular degeneration (ARMD) is a degenerative retinal disorder that causes progressive loss of central vision in older adults. The study aimed to determine the effect of asymmetric dimethylarginine (ADMA) as oxidizing metabolite and paraoxonase (PON1) activity within its phenotypes as an antioxidant agent in the development of such multifactorial disease. Mater...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 42 13 شماره
صفحات -
تاریخ انتشار 2001